
Upload di file
Corso di Laboratorio di Informatica

Prof. Dei Rossi, Leonardo Essam

Spring2026_CS300_11_FileUpload

Cosa si intende per "storage"?

2

Definizione (dal Web):

"Lo storage (o archiviazione/immagazzinamento) si riferisce alla conservazione
di dati digitali su dispositivi o servizi per un uso futuro, tramite varie tecnolo-
gie come lo storage a file (cartelle), a blocchi (partizioni) e a oggetti (per grandi
dati non strutturati, come video e immagini). Può essere locale (HDD, SSD) o nel
cloud, ed esistono diverse tipologie come il data storage primario (RAM tempo-
ranea) e secondario (persistente)."

Lo "storage" in PHP

3

In PHP vengono definiti due concetti che rimandano alla definizione di "stor-
age":

• Storage nel filesystem;
• Storage di sessione.

In entrambi i casi, si tratta del salvataggio di dati eterogenei relativi
all’utente e/o alle sue operazioni nell’applicazione Web.

Lo storage nel filesystem (1)

4

Essendo PHP un linguaggio server-side, esiste tutta una famiglia di funzioni per
gestire l’upload di file e cartelle nel filesystem del server.
Questo tipo di funzioni è utile ad esempio quando si lavora con un particolare
tipo di form che richiede all’utente non più (o meglio, anche) l’inserimento di
un valore testuale, ma l’upload di un file.

Lo storage nel filesystem (2)

5

Lo storage nel filesystem (3)

6

Osserviamo la presenza di diverse opzioni per il codice di stato HTTP che
viene restituito all’utente.

Come ripasso:

• 1XX - Informazione (Informational responses);
• 2XX - Successo (Successful responses);
• 3XX - Inoltro (Redirection messages);
• 4XX - Errore client (Client error responses);
• 5XX - Errore server (Server error responses).

Lo storage nel filesystem (4)

7

L’utilizzo dei codici 400, 413 e 415 permettono allo sviluppatore di
differenziare i messaggi di errore in base al tipo di errore generato nell’analisi
della richiesta dell’utente.

HTTP/X.Y 400 Bad Request

Il codice di stato 400 Bad Request indica che il server non ha elaborato la richi-
esta a causa di un errore che ha ritenuto essere un errore del client.
Il motivo di una risposta 400 è in genere dovuto a una sintassi della richiesta
non corretta.
I client che ricevono una risposta 400 devono aspettarsi che ripetere la richi-
esta senza modifiche non vada a buon fine, generando lo stesso errore.

Lo storage nel filesystem (5)

8

HTTP/X.Y 413 Content Too Large

Il codice di stato 413 Content Too Large indica che l’entità della richiesta era
più grande dei limiti definiti dal server. Il server potrebbe chiudere la connes-
sione o restituire un campo di intestazione Retry-After.
Prima della RFC 9110, la frase di risposta per lo stato era "Payload Too Large".
Questo messaggio è ancora ampiamente utilizzato.

Lo storage nel filesystem (6)

9

415 Unsupported Media Type

Il codice di stato 415 Unsupported Media Type indica che il server ha rifiutato
la richiesta perché il formato del contenuto del messaggio non è supportato.
Il problema di formato potrebbe essere dovuto al Content-Type o al
Content-Encoding indicati nella richiesta, oppure all’elaborazione del
contenuto del messaggio di richiesta.
Alcuni server potrebbero essere rigidi riguardo al Content-Type previsto per
le richieste.

Un primo esempio (1)

10

Si consideri il seguente from HTML:

<form action="upload.php" method="post"
enctype="multipart/form-data">
Seleziona file da caricare:

<input type="file" name="file1" required>
<button type="submit">Invia</button>

</form>

Un primo esempio (2)

11

Alcune regole da seguire:

1. Assicurarsi che la form utilizzi POST;
2. La form necessita anche del seguente attributo:

enctype="multipart/form-data"

L’uso di multipart/form-data specifica quale tipo di contenuto utilizzare al
momento dell’invio della form.

Un primo esempio (3)

12

Altre cose da notare:

1. L’attributo type="file" del tag <input> mostra il campo di input come
un controllo di selezione file, con un pulsante "Sfoglia" accanto al nome;

2. Il modulo sopra invia i dati a un file chiamato "upload.php".

Un primo esempio (4)

13

Iniziamo a impostare il codice per gestire l’upload di un file:

<?php
$target_dir = "uploads/";

$target_file = $target_dir;
$target_file .= basename($_FILES["file1"]["name"]);
?>

Si noti l’uso della variabile globale $_FILES. Tale variabile contiene al suo in-
terno i dati relativi ai file inviati tramite una richiesta POST.

Un primo esempio (5)

14

Definizione 1: Funzione basename([...])

La funzione basename([...]) ammette e richiede come parametro
una stringa che rappresenta un percorso nel filesystem.

La funzione restituisce quindi l’ultimo elemento (file o cartella)
del percorso dato.

<?php
echo(basename("/var/www/html/index.php")); // index.php
echo(basename("/home/rory/Documenti")); // Documenti
?>

Un file temporaneo

15

Quando viene fatto l’invio della POST da una form contenente dei file, tali file
vengono salvati in una posizione temporanea del server.
Si può leggere tale posizione accedendo alla chiave tmp_name:

<?php
echo($_FILES["file1"]["tmp_name"]);
?>

Verrà restituito un percorso assoluto che punterà al file appena caricato.

Who am I? (1)

16

Ci sono dei casi in cui vi è la necessità di permettere l’upload di solo alcuni tipi
di file, come ad esempio quando si vuole caricare una nuova foto profilo su un
social network.
In PHP è possibile verificare lato server che tipo di file è stato caricato.

Ricordate il trucco più vecchio del mondo?

Who am I? (2)

17

Definizione 2: Media types (MIME types)

Un media type (precedentemente noto come Multipurpose Internet
Mail Extensions o MIME type) indica la natura e il formato di un docu-
mento, file o insieme di byte.

I tipi MIME sono definiti e standardizzati nella RFC 6838 dell’IETF.

Alcuni MIME type più comuni: (link)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/MIME_types/Common_types

Who am I? (3)

18

È possibile leggere il MIME type di un file accedendo alla chiave type:

<?php
echo($_FILES["file1"]["type"]; // application/pdf
?>

In questo modo è possibile filtrare in modo preciso i tipi di file che sono
ammessi!

Esistenza di un file

19

Prima di caricare un file (o anche dopo per verificare che non ci siano stati
problemi), PHP mette a disposizione una funzione per verificare l’esistenza di
un file.

Definizione 3: Funzione file_exists([...])

La funzione file_exists([...]) ammette e richiede come
parametro una stringa che rappresenta il percorso di un file.

Restituisce true se il file esiste, false altrimenti.

Completamento dell’upload

20

Per finalizzare l’upload di un file nel server, vale la funzione
move_uploaded_file([...]).

Definizione 4: Funzione move_uploaded_file([...])

La funzione move_uploaded_file([...]) ammette e richiede
due parametri di tipo string dove il primo rappresenta il percorso di
sorgente (/tmp) e il secondo la destinazione dove si vuole spostare il file.

La funzione restituisce true se lo spostamento è avvenuto con
successo, false altrimenti.

	Cosa si intende per "storage"?
	Lo "storage" in PHP
	Lo storage nel filesystem (1)
	Lo storage nel filesystem (2)
	Lo storage nel filesystem (3)
	Lo storage nel filesystem (4)
	Lo storage nel filesystem (5)
	Lo storage nel filesystem (6)
	Un primo esempio (1)
	Un primo esempio (2)
	Un primo esempio (3)
	Un primo esempio (4)
	Un primo esempio (5)
	Un file temporaneo
	Who am I? (1)
	Who am I? (2)
	Who am I? (3)
	Esistenza di un file
	Completamento dell'upload

