
Filtri e sicurezza
Corso di Laboratorio di Informatica

Prof. Dei Rossi, Leonardo Essam

Fall2025_CS300_09_FiltersAndSecurity

Fidarsi è bene, ma non fidarsi è meglio! (1)

2

Abbiamo visto come ottenere dei dati in input dall’utente.
Solitamente, la maggior parte degli utenti userà la nostra applicazione come
si deve e non cercherà di trovare delle falle di sicurezza nella nostra appli-
cazione... :)

... le ultime parole famose ...

Fidarsi è bene, ma non fidarsi è meglio! (2)

3

La validazione degli input è una operazione fondamentale per garantire la si-
curezza della propria Web App!
Uno degli attacchi più famosi è sicuramente il Cross-site scripting (XSS),
questo tipo di attacco non riguarda nello specifico il server Web su cui viene
eseguita l’applicazione ma riguarda l’iniettare del codice JavaScript malevolo
all’interno di pagine Web visualizzate da altri utenti.

Cross-site scripting (XSS)

4

Validazione della form (1)

5

In PHP quando si lavora con i dati inviati dagli utenti è cosa buona e giusta
verificare la "bontà" dei dati ricevuti.
In PHP esistono diversi metodi per svolgere vari tipi di controlli.

Validazione della form (2)

6

Un primo controllo, per evitare errori nella logica del codice, è controllare che
effettivamente vengano compilati i campi della form.
Sappiamo che in HTML è possibile mettere il tag required, ma esso può
essere aggiornato con la tecnica più vecchia del mondo "tasto destro >
ispeziona".
In PHP, si può verificare l’esistenza di un campo della form con:

$esiste_variabile = key_exists("<chiave>", $array);

La funzione key_exists([...]) prende come primo parametro una chiave
e come secondo l’array da controllare. Questo è utile con $_POST perché è un
array chiave-valore!

Sicurezza dei dati (1)

7

Una volta verificata l’effettiva presenza dei dati richiesti dallo script, è neces-
sario poi assicurarsi che quei dati non siano "malevoli".
La funzione htmlspecialchars() in PHP serve a convertire caratteri spe-
ciali in entità HTML, così che un testo venga mostrato nel browser esatta-
mente com’è, senza essere interpretato come HTML o JavaScript.
È una funzione fondamentale per prevenire XSS (Cross-Site Scripting) e per
stampare in sicurezza dati provenienti dall’utente.

Sicurezza dei dati (2)

8

Sintassi della funzione:

htmlspecialchars(
string $string,
int $flags = ENT_COMPAT,
?string $encoding = null,
bool $double_encode = true

): string

Sicurezza dei dati (3)

9

Alcune traduzioni:

• & → &
• " → "
• ’ → ' (se abiliti ENT_QUOTES)
• < → <
• > → >

Sicurezza dei dati (4)

10

Esempio:

$input = '<script>alert("ciao")</script>';
echo(htmlspecialchars($input));

Risultato:

<script>alert("ciao")</script>

In questo modo la stringa non verrà interpretata da JavaScript!

Sicurezza dei dati (5)

11

Per completezza, la funzione inversa di htmlspecialchars è:

$input = '<script>alert("ciao") [...]';
echo(htmlspecialchars_decode($input));

Risultato:

<script>alert("ciao")</script>

Per approfondire

12

• PHP Form Validation
W3Schools - PHP Tutorial (link)

• PHP Form Required
W3Schools - PHP Tutorial (link)

• Cos’è il cross-site scripting?
CloudFlare - Learning > Security (link)

https://www.w3schools.com/php/php_form_validation.asp
https://www.w3schools.com/php/php_form_required.asp
https://www.cloudflare.com/it-it/learning/security/threats/cross-site-scripting/

	Fidarsi è bene, ma non fidarsi è meglio! (1)
	Fidarsi è bene, ma non fidarsi è meglio! (2)
	Cross-site scripting (XSS)
	Validazione della form (1)
	Validazione della form (2)
	Sicurezza dei dati (1)
	Sicurezza dei dati (2)
	Sicurezza dei dati (3)
	Sicurezza dei dati (4)
	Sicurezza dei dati (5)
	Per approfondire

