Git Flow (parte 2)
Corso di Laboratorio di
Gestione progetto e organizzazione d’impresa

Prof. Dei Rossi, Leonardo Essam

Fall2025_PM300_06_GitFlowPart2

Che cos’e Git Flow? (recap)

Gitflow € un modello di branching che prevede l'uso di feature branch e
molteplici branch primari.

E stato pubblicato per la prima volta e reso popolare da Vincent Driessen nel
2010. Rispetto allo sviluppo basato su trunk®, Gitflow presenta numerosi
branch di lunga durata e commit piu grandi.

Con questo modello, gli sviluppatori creano un feature branch e ritardano
'unione al ramo principale fino al completamento della feature.

10vvero uno sviluppo che prevede l'integrazione frequente delle modifiche nel ramo prin-
cipale del codice

Come funziona (recap)

Invece di un singolo ramo principale, Git FLow utilizza diversi rami per
registrare la cronologia delle modifiche del progetto.

Gitflow puo essere utilizzato per progetti con un ciclo di rilascio pianificato e
per le best practice DevOps di continuous delivery.

Questo flusso di lavoro non aggiunge nuovi concetti o comandi oltre a quanto
richiesto dal Feature Branch Workflow, ma piuttosto assegna ruoli molto speci-
fici ai diversi branch e definisce come e quando devono interagire.

Oltre ai feature branch, utilizza branch individuali per la preparazione, la
manutenzione e la registrazione dei rilasci.

Schema riassuntivo (recap)

wL
0O I
%/

L’estensione di Git Flow (1)

Git contiene al suo interno un’estensione (quindi un sottoinsieme di comandi
dedicato) per implementare in modo automatico le regole di Git Flow.

Questo permette di creare un nuovo repository Git e gli opportuni branch di
develop, feature/ e release/ coni giusti nomi/parenti/ecc.

Il comando per inizializzare una nuova repository con Git Flow é:
git flow init

Attenzione: questo comando va usato in sostituzione di git init e non
assiemel!

L’estensione di Git Flow (2)

$ git flow init

Initialized empty Git repository in ~/project/.git/

No branches exist yet. Base branches must be created now.
Branch name for production releases: [main]

Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]

Release branches? [release/]

Hotfix branches? [hotfix/]

Support branches? [support/]

Version tag prefix? []

L’estensione di Git Flow (3)

| suggerimenti tra parentesi quadre (es. [feature/]) rappresentano i valori
predefiniti, possono essere cambiati alla bisogna ma solitamente non & nec-
essario. Basta premere INVIO senza inserire nulla e verra usato il valore pre-
definito.

Il Version tag prefix e un identificativo che viene messo prima del nu-
mero di versione vero e proprio, ad esempio:

Version tag prefix? [] ver

git flow release finish '0.1.0'
Version: 'ver0.1.0'

Il branch di feature (1)

Senza le estensioni git-flow:

git checkout develop

git branch feature_branch
git checkout feature_branch

Quando si utilizza l'estensione git-flow:

git flow feature start feature_branch

Il branch di feature (2)

Una volta completato il lavoro di sviluppo sulla funzionalita, il passaggio suc-
cessivo consiste nell’unire feature_branch in develop.

Senza le estensioni git-flow:

git checkout develop
git merge feature_branch

Quando si utilizza l'estensione git-flow:

git flow feature finish feature_branch

Il branch di release (1)

Creare rami di rilascio e un’altra operazione di branching semplice. Come i
rami di funzionalita, i rami di rilascio si basano sul ramo di sviluppo. Un nuovo
ramo di rilascio puo essere creato utilizzando i seguenti metodi.

Senza le estensioni git-flow:

git checkout develop

git branch release/0.1.0
git checkout release/0.1.0

Quando si utilizza l’'estensione git-flow:

$ git flow release start 0.1.0
Switched to a new branch 'release/0.1.0'

Il branch di release (2)

Per completare un ramo dirilascio, utilizzare i seguenti metodi:

git checkout main
git merge release/0.1.0

Quando si utilizza l'estensione git-flow:

git flow release finish '0.1.0'

Il branch di hotfix (1)

Avere una linea di sviluppo dedicata alla correzione dei bug consente al team
di affrontare i problemi senza interrompere il resto del flusso di lavoro o atten-
dere il ciclo dirilascio successivo.

E possibile pensare ai branch di manutenzione come branch dirilascio ad hoc
che interagiscono direttamente con il ramo principale.

Il branch di hotfix (2)
Un branch di hotfix puo essere creato utilizzando i seguenti metodi:
Senza le estensioni git-flow:

git checkout develop

git branch bugfix_branch
git checkout bugfix_branch

Quando si utilizza l'estensione git-flow:

git flow hotfix start bugfix_branch

Il branch di hotfix (3)

Similmente al completamento di un ramo di rilascio, un ramo di hotfix viene
unito sia al ramo principale che a quello di sviluppo.

Senza le estensioni git-flow:

git checkout main
git merge bugfix_branch

git checkout develop
git merge bugfix_branch

Quando si utilizza l'estensione git-flow:

git flow hotfix finish bugfix_branch

2 Buonarroti

Cosa notiamo?

Un doppio merge

Notiamo che viene effettuato un dobbio merge di bugfix_branch: sia un
main cheindevelop.

Ma perché?

Questo perché main ha il solo scopo di tenere traccia dei rilasci definitivi
dell’applicazione, mentre develop tiene traccia dello sviluppo del progetto.

Segue che e necessario che anche develop sia aggiornato con ’hotfix appena
creato!

(2 Buonarroti

	Che cos'è Git Flow? (recap)
	Come funziona (recap)
	Schema riassuntivo (recap)
	L'estensione di Git Flow (1)
	L'estensione di Git Flow (2)
	L'estensione di Git Flow (3)
	Il branch di feature (1)
	Il branch di feature (2)
	Il branch di release (1)
	Il branch di release (2)
	Il branch di hotfix (1)
	Il branch di hotfix (2)
	Il branch di hotfix (3)
	Cosa notiamo?
	Un doppio merge

